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Several 2DPCA-based face recognition algorithms have been proposed hoping to achieve the
goal of improving recognition rate while mostly at the expense of computation cost. In this

paper, an approach named SI2DPCA is proposed to not only reduce the computation cost but

also increase recognition performance at the same time. The approach divides a whole face

image into smaller sub-images to increase the weight of features for better feature extraction.
Meanwhile, the computation cost that mainly comes from the heavy and complicated operations

against matrices is reduced due to the smaller size of sub-images. The reduced amount of

computation has been analyzed and the integrity of sub-images has been discussed thoroughly
in the paper. The experiments have been conducted to make comparisons among several better-

known approaches and SI2DPCA. The experimental results have demonstrated that the pro-

posed approach works well on reaching the goals of reducing computation cost and improving

recognition performance simultaneously.

Keywords : Face recognition; feature extraction; principle component analysis; covariance
computation; eigen-decomposition; image integrity.

1. Introduction

Face recognition in image processing has been signi¯cantly important because it can

be applied in human life e±caciously. Research areas include building/store access

control, suspect identi¯cation, security and surveillance.1�4,6�8,13,18�20,23,24,26,28,30,33,

35,36,38,40,42,43,49,52,53,55,56 Face recognition is not only natural but also intuitively

appealing. For example, the most obvious feature of a person is his face observed by

our eyes. One typical application to commercial products is technique of automatic

face detection in digital camera, mobile phones and notebooks. The theory of face

recognition can be combined with many arti¯cial intelligence approaches to achieve

better e®ect, so it has much higher research merit in this ¯eld.6,49
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Several algorithms have been proposed in face recognition. The best ones are

those that try not only to reduce computation cost but also to increase recognition

rate.25,50 Based on this viewpoint, principal component analysis (PCA)37 has become

a very popular feature extraction algorithm in recent decades. Sirovich and

Kirby17,37 were the ¯rst ones using PCA to recognize human faces successfully. Pujol

et al.31 presented topological PCA that combines PCA with the topological rela-

tionship existing among the variances of original data for face recognition. But this

approach requires high computation cost caused by the diagonalization of covariance

matrix. Kim et al.15 proposed kernel PCA that combines with PCA to perform face

recognition by projecting low dimensional data to be high dimensional ones.

Although this approach has high recognition accuracy rate up to 97.5% when testing

in ORL database, its projection process needs much computation cost. Wang et al.46

proposed the approach of combining PCA with linear discriminant analysis (LDA)

to do feature extraction in human face. The approach ¯rst uses PCA to extract

important features, and then LDA is used to make face information more discrimi-

native for easier recognition. However, the approach su®ers from the small sample

size problem when number of samples is not su±ciently large.48 Wang et al.45 also

proposed a hybrid approach that combines PCA together with symmetrical image

correction (SIC) and bit-plane feature fusion (BPFF) algorithms to reduce the in-

ferior in°uence of recognition when a face image has high contrast of illumination.

Hsieh and Tung9 proposed an integration of PCA with sub-pattern technique and

had shown not only good face recognition rate but also the ability of reducing the

in°uence from high contrast of illumination. Unfortunately, its high computation

cost is a drawback.

After PCA was proposed, Yang et al.50 proposed the so-called two-dimensional

principal component (2DPCA) algorithm aiming for better feature extraction of face

images. The 2DPCA has achieved the goal of increasing recognition rate and re-

ducing computation cost simultaneously.50 Because 2DPCA has such good perfor-

mance, various face recognition algorithms based on 2DPCA had been proposed and

enhanced. For instance, the approach of \two-directional two-dimensional PCA

((2D)2PCA)" proposed by Zhang and Zhoua54 is to process a face image from

transverse and longitudinal axis, respectively, and then perform the recognition by

analyzing their shortest dimension. Low computation cost is the advantage of this

approach. Unfortunately, its improvement on recognition rate is not ubiquitous in

relatively large scale of training samples. Sanguansat et al.34 proposed the approach

of \Two-dimensional principal component combined two-dimensional Linear dis-

criminant analysis (2DPCA and 2DLDA)"34 to face recognition applications. Al-

though this approach solves the small sample size problem, its computation cost is

high due to the composition of 2DPCA and 2DLDA. Meng and Zhang29 proposed

the combination of 2DPCA with self-de¯ned volume measure to perform feature

extraction by 2DPCA ¯rst and then conduct classi¯cation by computing the dis-

tances of matrix volumes. This approach is more suitable to process applications with
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high dimensional data. Wang et al.44 proposed \probabilistic two-dimensional

principal component analysis" that combines 2DPCA with Gaussian distribution

concept to mitigate the noise in°uence in face image recognition. Kim et al.16 pro-

posed \fusion method based on bidirectional 2DPCA" that reduces dimensions of

both row and column vectors before performing face recognition procedure. It does

increase recognition rate, but at the expense of high computation cost.32

Aforesaid face recognition algorithms have tried to either increasing recognition

rate or reducing computation cost, but not both, and all are based on 2DPCA that

apparently is well suitable for processing face image data. In this paper, an approach

named sub-image two-dimensional principal component analysis (SI2DPCA) is

proposed hoping to achieve not only reducing the computation but also increasing

the recognition rate in face image recognition applications. Unlike conventional

2DPCA, the SI2DPCA divides a whole face image into smaller sub-images to in-

crease the weight of features in those sub-images so that features can be better

recognized and extracted. At the same time, computation cost can also be reduced

due to smaller size of sub-images. For example, eyes, ears, noise, mouth and hair are

important features in terms of face recognition and need to be well extracted from a

face image data. When a whole image data is processed, its computation is more

complex and it is more di±cult to well conduct feature extraction because various

kinds of features are all included in one image to be extracted. However, if the whole

image is divided into smaller sub-images, one sub-image may only include the feature

of, say eye, meaning the eye feature is so obvious or outstanding that the feature can

be easier to be recognized and therefore can be well recognized and extracted from

the sub-image data.

The organization of this paper is as follows: Sec. 2 describes in detail the idea of

the proposed SI2DPCA. Its theory is derived and its algorithm is developed in this

section. In Sec. 3, various types of experiments are conducted against the ORL image

database, and the experimental results and computation costs are analyzed to

demonstrate the performance of the SI2DPCA. Finally, conclusions with some dis-

cussions are made in Sec. 4.

2. Two-Dimensional Principal Component Analysis

2.1. Principal component analysis

For high dimensional data, the task of classi¯cation becomes more di±cult due to the

problems resulting from data noise and high computation cost.51 To solve this puzzle,

it is necessary to reduce data dimension and ¯lter unimportant data. Among many

dimension reduction algorithms being proposed so far, the PCA is one of the most

popular ones.17,37,50 The concept of PCA is to get data approximation in lower

dimensions from its original data in higher dimensions.51 Suppose there are n pieces

of data in the space, and each data is in v dimensions. The purpose is to ¯nd a piece

of data x0 that can mostly approximate (represent) the whole n data. A cost function
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J can be set up to indicate the sum of errors:

Jðx0Þ ¼
Xn

k¼1

jjx0 � xkjj2; ð1Þ

Jðx0Þ ¼
Xn

k¼1

jjðx0 �mÞ � ðxk �mÞjj2; ð2Þ

where

m ¼ 1

n

Xn

k¼1

xk: ð3Þ

Equation (2) is derived from Eq. (1) and m is the average value of whole n data.

Then Eqs. (4) and (5) can be obtained from Eq. (2) by using the Lagrange multi-

pliers10,11 that enables the maximum value of an equation to be found when variables

are constrained by one or more functions.

Se ¼ �e; ð4Þ
S ¼ ðxk �mÞðxk �mÞ t: ð5Þ

S is known as a covariance matrix from Eq. (5). In Eq. (4), e is a projection vector.

The goal is to derive these projection vectors from original data so that the data

dimension can be reduced. By applying eigen-decomposition21 against Eq. (4), the

eigenvectors can be obtained and those eigenvectors are the projection vectors from

the original data.

In other words, for a set of data, the purpose of PCA is to do feature extraction,

reduce data dimension and ¯lter out unimportant data features.14,27 The ¯rst step of

PCA is to calculate the covariance matrix of original data and then apply eigen-

decomposition against the matrix to get eigenvalues and eigenvectors. Each eigen-

value corresponds to one eigenvector. The eigenvalue with maximum value indicates

its corresponding eigenvector has the biggest variance direction. Similarly, the ei-

genvalue with second-highest value means its corresponding eigenvector has the

second biggest variance direction, and so on.

2.2. Two-dimensional principal component analysis

The so-called 2DPCA approach by Yang et al.50 in 2004 is proposed particularly for

two-dimensional image data. When conventional PCA processes a two-dimensional

data, it must transform the data into one-dimensional image data causing high

computation cost by performing eigen-decomposition for covariance matrix.50 In-

stead of performing dimension reduction, 2DPCA processes against a two-dimen-

sional data directly.

Suppose there is an image data set Z ¼ fA1;A2; . . . ;ANg withN images, and the

dimension of every image is n� n. The covariance matrix of the image data set is
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computed by Eq. (6) and the average value of the data set is computed by Eq. (7).

R ¼ 1

N

XN

i¼1

ðAi �AÞðAi �AÞT ; ð6Þ

A ¼ 1

N

XN

i¼1

Ai: ð7Þ

In Eq. (6), Ai is an image in the data set, R is covariance matrix, and A is data

average.

After eigen-decomposition is performed for covariance matrix, k eigenvectors

corresponding to the k biggest eigenvalues are selected. These eigenvectors are the

projection vectors of the original image data set and the features of the image can

therefore be extracted from those projection vectors as shown in Eq. (8).

Yi ¼ AXi; i ¼ 1; 2; . . . ; k; ð8Þ
where Yi are projected feature vectors, Xi means eigenvectors, and there are k

biggest eigenvalues being selected. Then a feature vector set B ¼ ½Y1;Y2; . . . ;Yk� in
descending order of eigenvalues can be obtained and these projected feature vectors

are the resultant principal components of an original image data A by 2DPCA.

Because 2DPCA processes a two-dimensional face image directly, it can get better

result of feature extraction. On the contrary, the conventional PCA needs to

transform an image into one-dimensional data and therefore loses some feature in-

formation. Consequently, the recognition rate by 2DPCA is better than conventional

PCA for two-dimensional face images.

3. Sub-Image Two-Dimensional Principal Component

Compared with PCA, the 2DPCA has better performance on recognition accuracy

and computation cost.50 SI2DPCA is proposed in this paper to further increase the

recognition accuracy and decrease the computation cost. As discussed previously, the

high computation cost of PCA and 2DPCA comes from computing covariance

matrix and eigen-decomposition.21 Therefore, SI2DPCA proposes to equally divide

an image into smaller sub-images to be processed so that the total computation cost

can be reduced. The obvious features in a human face usually are eyes, ears, nose,

mouth and hairs. If a face image was not divided equally, some of resultant sub-

images could be so small that it does not contain any meaningful feature information,

such as only skin information. Even if it does, the feature information included in this

sub-image could be scanty or incomplete enough to be ignored. For example, a small

sub-image may contain only a very small portion of eyes due to the size of the sub-

image. Similarly, if a face image is divided into too many sub-images making each of

them in very small size, the above-mentioned phenomenon will take place too. In

other words, although the smaller size a sub-image is, the lower the total
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computation cost will be, an original face image can only be divided into appropriate

size for better recognition result.

The intuitive way is to equally divide a face image into four smaller sub-images for

feature extraction. Suppose there is an m�m square matrix and the eigen-decom-

position is to be performed against it. The eigenvalue � is obtained by subtracting �

from each of diagonal elements of the square matrix, and then setting the value of the

determinant of the square matrix to be zero. The process is described in Eq. (9).

a11 � � a12 � � � � � � a1m
a21 a22 � � � � � � � � a2m

..

. ..
. . .

. ..
.

..

. ..
. . .

. ..
.

am1 am2 � � � � � � amm � �

�������������

�������������

¼ 0: ð9Þ

The next step is to apply the extension method21 to extend the square matrix in

Eq. (9). The initial procedure is to choose the ¯rst element of every column from the

determinant in Eq. (9) and multiply it by the smaller determinant that consists of the

elements which belong to neither the column nor the row where the ¯rst element is

located. The ð�1ÞðiþjÞ in Eq. (10) is used to get the coe±cient sign (þ or �) of every

smaller determinant. The symbols of \i" and \j" are the row and column of the ¯rst

element of a determinant, respectively. For example, \i" is 1 and \j" is 2 for element

a12. Equation (10) is the result of extending Eq. (9).

smaller
determinant

The extension process in Ref. 21 needs to be performed against every smaller

determinant in Eq. (10). This procedure of performing extension process continues

until no more determinant exists. At this moment, only scalar computation remains

in the equation. Based on Eq. (10), it is obvious to observe that the higher the

dimension a square matrix has, the higher the computation cost is.

Because the time complexity of computing a determinant is O(n!), the total

computation cost of computing the determinants for each of divided smaller square

matrices is much less than the computation cost for the originally undivided matrix.
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For instance, suppose there is a 4� 4 matrix to which eigen-decomposition is to be

performed. As discussed previously, a value � is subtracted from diagonal elements of

the matrix, and the extension process is repeatedly performed against determinants.

The ¯nal equation is then set to value zero. The whole process is illustrated in

Eq. (11) and Fig. 1.

a11 � � a12 a13 a14
a21 a22 � � a23 a24
a31 a32 a33 � � a34
a41 a42 a43 a44 � �

��������

��������
¼ 0: ð11Þ

From the ¯nal equation that is set to be zero, four � values can be obtained. The

eigenvectors can consequently be calculated by substituting � values into Eq. (11).

The eigenvector that is based on the largest � value is the most important feature.

The eigenvector based on the second largest � value is the second important feature,

and so on. The illustration can be done by a simple example. Suppose eigen-

decomposition is to be performed against below Eq. (12),

a11 � � a12
a21 a22 � �

����
���� ¼ 0: ð12Þ

Then Eq. (13) is the result of applying extension process to Eq. (12).

ða11 � �Þða22 � �Þ � a12a21 ¼ 0: ð13Þ
Two � values can be obtained from Eq. (13), meaning two eigenvectors can be

consequently obtained. For a face image, this means two important features are

extracted from the image for recognition purpose. Because current computers are

mostly binary-based systems, ill condition problem that gives incorrect result could

Fig. 1. The process of eigen-decomposition.
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be caused when computing eigen-decomposition.21 To avoid such problems, many

studies use singular value decomposition (SVD) to replace the process of eigen-

decomposition. The computation result of SVD is very close to that of eigen-

decomposition, but it can avoid the formation of ill condition problem.21 For a matrix

with dimension m� n, the computation cost of SVD can be described as Eq. (14)5

4m2nþ 8mn2 þ 9n3: ð14Þ
The big-order of Eq. (14) is O(n3Þ when m < n, meaning the dimension variation

causes signi¯cant di®erence in terms of computation cost. For example, if a 4� 4

matrix is equally divided into four smaller matrices with 2� 2 dimension each, then

the total computation cost of performing eigen-decomposition against the four

smaller matrices is less than that against the original 4� 4 matrix. The computation

cost is shown in Table 1.

Table 1 indicates that the computation cost can be reduced by half if eigen-

decomposition is performed against four 2� 2 matrices instead of one 4� 4 matrix.

This infers that the idea of working on several smaller matrices rather than one

original larger matrix by SI2DPCA can lower computation cost when performing

eigen-decomposition process. What needs to be explained next for the proposed

SI2DPCA is the integrity of getting good feature extraction from separated smaller

matrices.

In order to decrease computation cost, the essence of SI2DPCA is to divide an

original image into smaller ones to be processed. However, the division process could

separate a complete image feature into pieces causing bad performance of feature

extraction. Therefore, after eigenvectors are obtained from smaller matrices by

SI2DPCA, the smaller matrices need to be integrated together to be processed one

more time for correct feature extraction.

The comparison of computation cost between the conventional 2DPCA and the

proposed SI2DPCA is shown in Table 2 that details the formulas of computation

cost. In Table 2, the formula (a) that comes from Eq. (7) is to compute the data

average by 2DPCA. The N means computation summation of N images. The

computation amount of m� n in formula (a) is for matrix addition. Adding one in

formula (a) is for the division operation in Eq. (7). Formula (b) is from Eq. (6) to

compute the covariance matrix. The N and the plus-one have same meaning as in

formula (a). There are three operations in Eq. (6). The ¯rst one is subtracting the

data average obtained by formula (a) from the original image data, causing m� n

computation. There are two such operations in Eq. (6), so the computation cost is

2�m� n. The second operation is the multiplication of the two matrices shown in

Table 1. Comparison of computation cost for eigen-decomposition.

Computation Cost of Eigen-Decomposition: 4m2nþ 8mn 2 þ 9n3

Four 2� 2 matrices 4� ð4� 22 � 2þ 8� 2� 22 þ 9� 23Þ ¼ 672

One 4� 4 matrix 4� 42 � 4þ 8� 4� 42 þ 9� 43 ¼ 1344
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Eq. (6). The computation cost of such matrix multiplication is n3. The third oper-

ation is the computation of transposing a matrix, causing m� n computation.

Formula (c) comes from Eq. (14) and is the computation cost of eigen-decomposition

for 2DPCA.

The rest of formulas in Table 2 are for SI2DPCA. The formulas (d)�(f) are for

¯rst process that is taken place to process each of divided smaller matrices. The

formulas (g)�(i) are for second process that is for processing the matrix after inte-

gration. Suppose an original image with dimension m� n is equally divided into k

smaller images, where k can be square-rooted and m and n are times of k1=2. That is,

the dimension of each smaller matrix is ððm=k1=2Þ � ðn=k1=2ÞÞ. In ¯rst process, Eqs.

(7), (6) and (14) need to be applied for each of k smaller matrices in that order. As

explained previously for formulas (a)�(c), the computation costs indicated in for-

mulas (d)�(f) are self-explained by reducing dimension to be ððm=k1=2Þ � ðn=k1=2ÞÞ
for each smaller matrix and summing up the whole computation cost of k smaller

matrices.

After ¯rst process is completed by SI2DPCA, feature extraction result is pre-

sented, say h features are extracted meaning only h, instead of original (n=k1=2Þ,
columns are important and needed for each of k smaller image matrices. Here the

value h is usually much smaller than the value of (n=k1=2Þ because only few impor-

tant features are extracted. As discussed previously, the divided k image matrices

need to be combined together in order to obtain complete and correct image features.

After putting all these k image matrices together, the dimension of the combined

image matrix becomes m� s, where s is h multiplies k1=2 representing the number of

extracted features of the combined image matrix from smaller image matrices.

Similarly, the s value here should be much smaller than n. Then, as discussed before,

formulas (g), (h) and (i) can be easily obtained by applying Eqs. (7), (6) and (14) to

this resultant matrix with dimension m� s during the second process of SI2DPCA.

In previous discussions, an original image is assumed in m� n dimension. In

reality, a two-dimensional human face image generally has same dimension on col-

umns and rows, meaning m equals n. Under this assumption, the time complexity in

big order for Table 2 can therefore be summarized in Table 3. Although Table 3

Table 2. Analysis of computation cost.

SI2DPCA

Computation Type 2DPCA First Process Second Process

Data average

computation

N � ðm� nÞ þ 1 (a) K �N � ½ðm� nÞ=k� þ k (d) N � ½m� s� þ 1 (g)

Covariance

computation
N � ð2�m� nþ n3

þm� nÞ þ 1 (b)
k�N � ½2� ðm� nÞ=kþ ðn=k1=2Þ3

þðm� nÞ=k� þ k (e)

N � ½2�m� sþ s3

þm� s� þ 1 (h)

Eigen-decomposition 4�m2 � nþ 8�m k� ð4� ðm=k1=2Þ2 � ðn=k1=2Þ 4�m2 � sþ 8�m

computation �n2 þ 9� n3

(c)
þ8� ðm=k1=2Þ � ðn=k1=2Þ2
þ 9� ðn=k1=2Þ3Þ (f)

�s2 þ 9� s3

(i)
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shows SI2DPCA has no advantage over 2DPCA in terms of time complexity, its

actual computation cost is less when k is greater than one. The bigger the k is, the

greater the decreased amount is for computation cost. In general, the k is at least 4

meaning at least roughly half computation cost is reduced by SI2DPCA.

Generally speaking for face images, since h is the dimension of selected feature

vectors in every smaller image, the value of s should be less than the dimension of

original image data by about 20 times.50 Therefore, Table 4 can be obtained after

replacing s in Table 3 by the value m/20. In Table 4, the column \Sum" is the

summation of the column \First Process" and the column \Second Process". From

Table 4, it is clear that the computation cost of SI2DPCA is less than that of

traditional 2DPCA.

Above discussions prove that SI2DPCA can reduce computation cost. However,

the fundamental goal is to perform face image recognition. That is, hoping the

proposed SI2DPCA does not improve its computation cost at the expense of rec-

ognition performance.

In SI2DPCA, after an original face image is equally divided into several smaller

sub-images, each of the sub-images is processed individually for feature extraction.

Because the size of a sub-image is smaller, any important features existing in this

sub-image can be easier to be found and therefore to be extracted. For example, a

sub-image may include only features of eyes and hair, and these features and their

detailed textures would then be so obvious to be recognized and extracted in this

relatively small image. On the other hand, a whole image includes not only eyes and

hair but also many other features. In this situation, the features of eyes and hair may

not be so outstanding in such immense image data and therefore cannot be easily

recognized. Even these two features have been recognized, their weights may not be

Table 3. Time complexity analysis in big order for matrices.

SI2DPCA

Computation Type 2DPCA First Process Second Process

Data average computation m2 m2 (m/kÞ
Covariance computation m3 ðm=k1=2Þ3 s3

Eigen-decomposition computation m3 ðm=k1=2Þ3 s3

Table 4. Time complexity analysis in big order for face images.

SI2DPCA

Computation Type 2DPCA First Process Second Process Sum

Data average computation m2 m2 ðm=kÞ m2þ (m=kÞ
Covariance computation m3 ðm=k1=2Þ3 ðm=20Þ3 ðm=k1=2Þ3 þ ðm=20Þ3
Eigen-decomposition computation m3 ðm=k1=2Þ3 ðm=20Þ3 ðm=k1=2Þ3 þ ðm=20Þ3
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as great as those extracted from smaller sub-images because of the co-existence of

other features in the whole bigger image.

The face image shown in Fig. 2 from ORL database is used to explain above

discussions. The dimension of the face image is 112� 92. To process the face image

by 2DPCA, the covariance matrix is obtained by applying Eq. (6) to the image. The

average value A is derived by Eq. (7) and the projected vectors are consequently

obtained by Eq. (8). As mentioned before, the dimension of selected feature vectors

by 2DPCA is usually much less than the dimension of original data by around 20

times depending on applications. Suppose seven feature vectorsY1 � Y7 are selected

and are denoted as B ¼ ½Y1;Y2;Y3;Y4;Y5;Y6;Y7� where B is called feature do-

main data that can be transformed back to face domain to see how much important

information these features have represented for the whole information of the original

image. The mechanism of transformation process is shown in Eq. (15).

A ¼ BX�1; ð15Þ

AX ¼ B: ð16Þ

Equation (15) is derived from Eq. (16). Equation (16) means that the projected

feature vectors B can be obtained by the original data A and its projected eigen-

vectors X. That is, Eq. (15) shows that a face image can be obtained by projected

feature vectors B and the inversed matrix of projected eigenvectors X.

Equation (15) can also be interpreted from the viewpoint of dimension. The image

dimension in Fig. 2 is 112� 92, and a 92� 92 dimensional covariance matrix for the

image is computed by Eq. (6). After performing eigen-decomposition against the

covariance matrix, seven eigenvectors X in Eq. (15) corresponding to the seven

biggest eigenvalues are selected for the seven most informative features. The di-

mension of the resultant seven eigenvectorsX is 92� 7. From Eq. (8), the dimension

of the projected feature vector Y is 112� 1. Because seven features are selected, the

Fig. 2. Original face image (From ORL database).

A Low-Computation Approach for Human Face Recognition

1256015-11



dimension of the seven projected feature vectors is 112� 7 forming the matrix B in

Eq. (15). Since matrices B and X are known, the face image A can be obtained by

Eq. (15). The resultant image of A is shown in Fig. 3.

Although Fig. 3 looks more blurred than Fig. 2 because of incomplete information,

obvious features such as eyes, ears, mouth and hair are clearly shown. The point is

that the dimension of the image in Fig. 3 has been reduced to be 112� 7 from

112� 92 of the original image in Fig. 2.

Next issue to be discussed would be how small in size a sub-image should be in

order to get the best result. As mentioned previously, the horizontal dimension and

vertical dimension are usually same for face images. For illustration purpose, a face

image in Fig. 2 can be divided into either four or 16 smaller sub-images. Similarly,

assume seven features are selected, then after applying Eq. (15), the obtained image

formed by the seven selected features are shown in Fig. 4 when dividing into four

Fig. 3. Face image formed by selected features.

Fig. 4. The image in face domain (division number: 4).
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smaller sub-images and in Fig. 5 when dividing into 16 even smaller sub-images. It is

obvious that Fig. 5 is a bad one for face recognition because no feature can be clearly

seen. The reason is when an original face image is divided into too many small sub-

images, the feature information existing in each of them is so little that the feature

information cannot be distinguished from other information.

After sub-images are processed and features are extracted, these sub-images have

to be combined together to form one image for data integrity. Because only the

information, that is actually eigenvectors, related to extracted features are preserved

at this moment, some vertical lines can be observed after combining these sub-images

together. For example, one vertical line can be seen in the middle of Fig. 4. There is

only one vertical line in Fig. 4 because there are only two sub-images being combined

along horizontal side. In other words, the line is caused because of discontinuous

image data in the seam edge when combining two sub-images. Such phenomenon is

called edge occurrence. There is no such phenomenon taking place along vertical side

because 2DPCA reduces column vectors rather than row vectors. The image data

along vertical side is continuous when combining sub-images. The creation of edge

occurrence does not a®ect ¯nal recognition performance at all because it is feature

domain, not face domain like Fig. 4, to be used for face recognition. The feature

domain has preserved important information of extracted features and eliminated

noisy characteristics.

Figure 6 is the feature domain formed by the four sub-images divided from the

original face image in Fig. 2 that is in 112� 92 dimension. That is, each sub-image

has dimension of 56� 46. Suppose four features are extracted, then the horizontal

dimension of the feature domain of every sub-image has been reduced from 46 to 4.

After combining the four sub-images together, the integrated feature domain shown

in Fig. 6 has dimension of 112� 8. In Fig. 6, the lighter area is more informative,

while the darker area is less. There are four rectangle bars in Fig. 6 because of four

sub-images. In each bar, the color has gradually become darker and darker from left

Fig. 5. The image in face domain (division number: 16).
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to right. This phenomenon corresponds to the fact that in each image the most

important feature is located in the left side while the least important one is located in

the right side after feature extraction. Figure 7 shows the feature domain after the

original image in Fig. 2 is processed by 2DPCA directly. Same phenomenon can be

observed in Fig. 6 as well as in Fig. 7.

Most popular recognition/classi¯cation algorithms are based on locations.12,22,50

For example, the popular nearest neighbor rule (NNR)50 computes pixel values in

same locations of every image. In other words, two images are computed against each

other at corresponding locations. That is, operational result is correct as long as

location relation of image data is preserved. For example, suppose Fig. 6 is to be

compared against other images, the pixel value in location (1; 1) of Fig. 6 is processed

against corresponding location (1; 1) of other images. Similarly to the pixel value in

Fig. 7. Feature domain by 2DPCA.

Fig. 6. The feature domain by SI2DPCA.
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location (1; 2), and so on. Because all sub-images are processed by SI2DPCA, the

locations of extracted features are arranged by the same way for all sub-images,

meaning the location relation of features is preserved among all sub-images. For

example, the importance of feature distribution in Fig. 6 is descended from the ¯rst

column to the 4th column for the ¯rst sub-image. Similarly, the importance of feature

distribution for the second sub-image is descended from the 5th column to the 8th

column. Because such kind of location relation is preserved for every sub-image, the

recognition/classi¯cation can be performed correctly by SI2DPCA although the sub-

images have been combined together for integrity and their row dimension has been

reduced.

Above discussions have shown that computation cost can be reduced and at the

same time the recognition performance can be improved by SI2DPCA when a face

image is properly divided into smaller sub-images to be processed individually.

According to the aforesaid analysis, the proper number of dividing a face image into

smaller sub-images is four for face recognition. If the division number is higher than

four, the recognition performance becomes worse because features have been sepa-

rated into too small pieces to be recognized in each of sub-images.

4. Experiments and Analysis

4.1. The ORL database

The ORL database41 is a well-known face image database and is used in this paper

for experiments. There are 40 individual faces in ORL database. Each individual face

has 10 di®erent images making totally 400 face images in the database. The images

were taken with a tolerance of some tilting and rotation of the face for up to 20�.41,50

In ORL database, all images are grayscale with dimension of 112� 92. The pixel

value range is 0 � 255.

4.2. Experiments and analysis of SI2DPCA

In this section, the recognition capabilities of SI2DPCA and 2DPCA are compared.

Both SI2DPCA and 2DPCA are feature extraction algorithms, and the classi¯cation

algorithm is performed by NNR in this experiment.

According to Table 2, the computation cost of SI2DPCA and 2DPCA can be

calculated for the images in ORL database. Every image has dimension of 112� 92,

meaning m and n in Table 2 are 112 and 92, respectively. And each image is divided

into four smaller sub-images, meaning the value of k in Table 2 is 4. Suppose 200

images are taken as training data, meaningN in Table 2 is 200, and eight features are

selected and extracted. Because the value of s, that is the feature vector dimension in

second process, is set to be the number of extracted features multiplies the square

root of k, the value of s is therefore 8� 2 ¼ 16. Putting these values into Table 2, the

result is shown in Table 5.
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Table 5 shows that the computation cost for SI2DPCA is only half of 2DPCA.

When calculating covariance matrix and eigen-decomposition, there are many qua-

dratic or cubic power computations. Smaller image dimensions operated in

SI2DPCA can greatly reduce the computation cost, as discussed previously.

Besides the computation cost, the proposed SI2DPCA and conventional 2DPCA

also need to be compared on their recognition performance. Both approaches are

feature extraction algorithms. The recognition is performed by the nearest neighbor

rule (NNR)50 that is based on Euclidean distance shown in Eq. (17).

d ¼ jjV�Pjj2: ð17Þ
The symbols V and P are two mean vectors, and d is Euclidean distance.

Equation (17) computes the norm of V-P. Suppose V ¼ ðv1; v2; v3Þ and P ¼
ðp1; p2; p3Þ, the operation of norm is shown in Eq. (18).

jjV�Pjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv1 � p1Þ2 þ ðv2 � p2Þ2 þ ðv3 � p3Þ2

p
: ð18Þ

Suppose there are N images, represented as B1;B2; . . . ;BN , and each image is

represented by a projected feature vector, such as ½Y1
1;Y

1
2; . . . ;Y

1
d� for B1 with

m� d dimension. The classes of these N images are already known. Suppose a class-

unknown data Tk ¼ ½T1;T2; . . . ;Td� is to be recognized against these N images. The

computation process is shown in Eq. (19).

dðB;TÞ ¼
Xd

k¼1

jjBk �Tk jj2: ð19Þ

The class of Tk is classi¯ed as the class of Bk if these two have minimum distance

d in Eq. (19).

In this experiment, the ¯rst ¯ve images of every face are treated as training and

the remaining ¯ve images of every face are treated as testing images. That is, there

Table 5. Analysis of computation cost for ORL database.

SI2DPCA

Computation Type 2DPCA First Process (a) Second Process (b) (a) þ (b)

Data average 200� ð112� 92Þ þ 1 4� 200� ð56� 46Þ þ 4 200� ð112� 16Þ þ 1 2,419,205

computation ¼ 2;060;801 ¼ 2;060;804 ¼ 358;401

Covariance matrix 200� ð2� 112� 92 4� 200� ð2� 56� 46 200� ð2� 112� 16 85,945,605

computation þ 923 þ 112 þ 463 þ 56 þ 163 þ 112
� 92Þ þ 1 � 46Þ þ 4 � 16Þ þ 1

¼ 161;920;001 ¼ 84;051;204 ¼ 1; 894; 401

Eigen-decomposition 4� 1122 � 92 4� ð4� 562 � 46 4� 1122 � 16 10,673,120

computation þ 8� 112 þ 8� 56� 462 þ 8� 112

� 922 þ 9� 923 þ 9� 463Þ � 162 þ 9� 163

¼ 19;208;128 ¼ 9; 604; 064 ¼ 1;069;056

Sum of computation 183,188,930 95,716,072 3,321,858 99,037,930

cost
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are 200 images for training and 200 images for testing. Seven important features are

extracted in the experiment, meaning a seven-elements feature vector is obtained for

each of images. The projected feature vector of each of training and testing images

can be calculated by multiplying the seven-elements feature vectors to the data of

every training and testing images. The classi¯cation for each of testing images can

then be performed by NNR against the training images.

The procedure of the experiment is conducted as shown in Fig. 8. In the begin-

ning, the images in ORL database are divided into training and testing images. The

important features are then extracted to get feature vector from training images and

consequently projected feature vector can be obtained for each of the training and

testing images. Finally, the classi¯cation result can be performed by NNR based on

these projected feature vectors. The procedures of SI2DPCA and 2DPCA are exe-

cuted respectively for performance comparison.

Figure 9 shows how the classi¯cation is performed in this experiment. Since 200

images are used as training and 200 images are used as testing data, there are 200

projected feature vectors for training and 200 projected feature vectors for testing

ORL database 

Training images Testing images 

Extract important 

feature vectors by 

SI2DPCA  

Calculate projected 

feature vectors for 

each of training 

images 

Calculate projected 

feature vectors for 

each of testing 

images 

Calculate testing images 

against training images 

Calculate 

recognition rate 

Fig. 8. Flow chart of experimental procedure.
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images to be calculated for classi¯cation. The ¯rst projected feature vector of testing

image is classi¯ed against the 200 projected feature vectors of training images based

on the computational result of NNR, resulting in 200 values. The class of the training

image is said to be the class of the testing image that corresponds to the minimum

value among the 200 NNR results. At this moment, the classi¯cation of the ¯rst

image can be either correct or wrong. Similar procedure is performed for the second,

third, etc. until the 200th testing images, resulting in totally 200 values of either

correct or wrong classi¯cation. The recognition rate can therefore be calculated by

dividing the number of correct classi¯cations by 200.

The recognition rate comparison between 2DPCA and SI2DPCA is shown in

Table 6. Earlier discussions argued that important features can be better recognized

and extracted in smaller sub-images. This can be observed in Table 6 that

shows slight better recognition rate for SI2DPCA over conventional 2DPCA. Both

Tables 5 and 6 together show that the SI2DPCA reduces computation cost without

compromising its recognition performance.

As mentioned previously, there are two processes being performed by SI2DPCA.

The ¯rst process is to calculate the projected feature vectors for each of sub-images,

and the second process is for image integration. Table 7 compares the recognition

performance between the one with only the ¯rst process and another one with both

¯rst and second processes by SI2DPCA. The result in Table 7 con¯rms previous

Fig. 9. Operation of classi¯cation.

Table 6. Recognition comparison between

2DPCA and SI2DPCA.

Strategy Recognition Rate (%)

2DPCA 93

SI2DPCA 93.5
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statements that the sub-images are better to be combined together for image in-

tegrity and consequently for better recognition after obtaining projected feature

vectors.

Various methodologies based on 2DPCA have been proposed. Table 8 shows the

performance comparison in terms of recognition rate and computation cost among

some of better-known approaches and SI2DPCA. All the experiments for the

approaches in Table 8 are conducted based on the face images in ORL database. In

Table 8, the computation costs of method 1, method 2 and method 3 are all higher

than SI2DPCA while the recognition rates are either lower than or same as

SI2DPCA. This is because SI2DPCA operates against matrices in smaller dimen-

sions. For methods 4, 5 and 6 in Table 8, they even put additional processes to

2DPCA. Method 5 combines 2DPCA with Kernel algorithm. This approach projects

image data to high dimensional space, causing high computation cost. Although its

recognition rate is slightly better than the proposed SI2DPCA, the much higher

computation cost makes it di±cult for practical applications. Method 6 combines

feature fusion with 2DPCA in order to increase recognition rate. The resultant

recognition rate is very good at 98.1% that is better than the rate of 93.5% by

SI2DPCA in the experiment. Unfortunately, the computation cost of this approach

is so high, at least 10 times higher than 2DPCA, that it is impossible to be applied to

any practical applications.

5. Conclusion

The feature extraction algorithm 2DPCA is specially developed for face recognition.

Its characteristics are low computation cost and good feature extraction, making

Table 7. Comparison between one- and two-process by
SI2DPCA.

Number of SI2DPCA Processes Recognition Rate (%)

One 92
Two 93.5

Table 8. Comparison among other methods and SI2DPCA.

Method Number Method Recognition Rate (%) Computation Cost

1 (2D)2PCA54 90.5 high

2 2DPCA þ Fusion method

based on bidirectional16
92.5 high

3 2DPCA þ 2DLDA34 93.5 high
4 SI2DPCA (proposed) 93.5 low (lower than

2DPCA)

5 2DPCA þ Kernel39 94.58 very high
6 2DPCA þ Feature fusion approach47 98.1 very very high
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2DPCA a popular approach for face recognition. In this paper, an enhanced ap-

proach \SI2DPCA" is proposed to operate at even lower computation cost without

compromising its good recognition performance. Both of the two goals of reducing

computation cost and maintaining good recognition rate have been shown in the

results of the conducted experiments in this paper. This paper not only discusses in

details on how the proposed SI2DPCA works but also points out that the number of

smaller sub-images divided from an original image is critical to the success of face

recognition by the approach. For face images in ORL database, the appropriate

number is four. Since most face images have same horizontal and vertical dimensions

to cover entire face information, dividing original images into four smaller sub-images

should be a good way in reality. Nevertheless, even dividing into four sub-images may

not reach optimal performance in some other applications, the SI2DPCA should

perform as better result as shown in the experiments in this paper.
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